小型交流电机

电机如何旋转 电机的旋转原理是什么

电机如何旋转 电机的旋转原理是什么 立即咨询
首页 > 产品型号 > 小型交流电机

电机如何旋转 电机的旋转原理是什么

时间: 2024-04-09 17:42:48 |   作者: 小型交流电机

  世界上功率消耗量的近一半是由电机消耗,因此在解决世界能源问题上,电机的高效率化被称为是最有效的措施。

  一般情况下指将磁场内电流流通产生的力转变为旋转动作,在广义范围内还包括直线动作。

  按电机驱动的电源种类,可分为DC电机和AC电机。而 根据电机旋转原理,大致可分为以下几种。(特殊电机除外)

  首先,为便于后续电机原理说明,我们来回顾一下有关电流、磁场和力的基本定律/法则。虽然有一种怀旧的感觉,但如果平时不常使用磁性元器件,就很容易忘记这些知识。

  例如,当考虑到旋转角度仅为θ的状态时,与b和d成直角作用的力为sinθ,因此a部分的转矩Ta由以下公式表示:

  该公式不仅适用于矩形,也适用于圆形等其他常见形状。电机是利用了该原理。

  在带旋转轴的永久磁铁周围,①旋转磁铁(使产生旋转磁场),②则根据 N极与S极异极相吸、同级相斥原理,③带旋转轴的磁铁将旋转。

  导线中流过电流使其周围产生旋转磁场(磁力)从而磁铁旋转,实际上与此是一样的动作状态。

  另外,将导线绕成线圈状,则磁力被合成,形成大的磁场通量(磁通量),产生N极和S极。

  在此,作为旋转电机的实际方法,介绍利用三相交流和线圈制造旋转磁场的方法。

  如上所述,缠绕铁芯的线°配置U相线圈、V相线圈、W相线圈,电压高的线圈产生N极,电压低的线圈产生S极。

  各相位按正弦波变化,因此各线圈产生的极性(N极、S极)和其磁场(磁力)将发生变化。

  此时,单看产生N极的线圈,按U相线圈→V相线圈→W相线圈→U相线圈依次变化,从而发生旋转。

  下图中给出了步进电机、有刷直流(DC)电机、无刷直流(DC)电机这三种电机的大概构造和对比。这些电机的基本组成部件主要为线圈、磁铁和转子,另外由于种类不同,又分线圈固定型和磁铁固定型。

  以下为与示例图相关的结构说明。由于更细致地划分的话,还有几率存在其他结构,因此请理解本文中介绍的是大框架下的结构。

  这里的有刷直流电机的磁铁在外侧固定,线圈在内侧旋转。由电刷和换向器(commutator)负责向线圈供电和改变电流方向。

  由于马达电机种类不同,即使基本组成部件相同其结构也有不同。具体将在各部分进行详细说明。

  下面是经常在模型中使用的有刷直流电机的外观,以及普通的两极(2个磁体)三槽(3个线圈)型电机的分解示意图。也许很多人都有拆卸电机、拿出磁铁的经验。

  可以看到有刷直流电机的永磁体是固定的,有刷直流电机的线圈可以绕内部中心旋转。固定侧称为“定子”,旋转侧称为“转子”。

  旋转中心轴的外围有三个换向器(用于电流切换的弯曲金属片)。为了尽最大可能避免彼此接触,换向器之间间隔120°(360°÷3枚)配置。换向器随着轴的旋转而旋转。

  一个换向器连接有一个线圈端和另一个线圈端,并且三个换向器和三个线圈作为电路网形成一个整体(环形)。

  两个电刷被固定在0°和180°处,以便与换向器接触。外部直流电源与电刷相连接,电流按电刷→换向器→线圈→电刷的路径流动。

  线圈A在最上方,将电源连接到电刷,设左侧为(+),右侧为(-)。大电流从左电刷通过换向器流到线圈A。这是线圈A的上部(外侧)变为S极的结构。

  而由于线从左电刷流向线圈B和线圈C的方向与线圈A相反,因此线圈B和线圈C的外侧变为弱N极(在图中用略小字母表示)。

  从③到④上侧的线圈持续受到向左动的力,下部的线圈持续受到向右动的力,并继续逆时针方向旋转

  在线°旋转到③和④状态下,当线圈位于中心水平轴上方时,线圈的外侧变为S极;当线圈位于下方时变为N极,并且反复该运动。

  换句话说,上侧线圈反复受到向左动的力,下侧线圈反复受到向右动的力(均为逆时针方向)。这使转子始终逆时针旋转。

  如果将电源连接到相对的左电刷(-)和右电刷(+),则线圈中会产生方向相反的磁场,因此施加到线圈上的力的方向也相反,变为顺时针旋转。

  此外,当断开电源时,有刷电机的转子会因没有了使之继续旋转的磁场而停止旋转。

  左侧是用来旋转光盘播放设备中的光盘的主轴电机示例。共有三相×3共9个线圈。右侧是FDD设备的主轴电机示例,共有12个线)。线圈被固定在电路板上,并缠绕在铁芯上。

  在线圈右侧的盘状部件是永磁体转子。外围是永磁体,转子的轴插入线圈的中心部位并覆盖住线圈部分,永磁体围绕在线圈的外围。

  该内部结构简图是结构很简单的2极(2个磁体)3槽(3个线圈)电机示例。它类似于极数和槽数相同的有刷电机结构,但线圈侧是固定的,磁体可以旋转。当然,没有电刷。

  在这种情况下,线圈采用Y形接法,使用半导体元件为线圈供给电流,根据旋转的磁置来控制电流的流入和流出。在该示例中,使用霍尔元件来检测磁体的位置。霍尔元件配置在线圈和线圈之间,根据磁场强度检测产生的电压并用作位置信息。在前面给出的FDD主轴电机的图像中,也能够正常的看到在线圈和线圈之间有用来检测位置的霍尔元件(线圈的上方)。

  霍尔元件是众所周知的磁传感器。可将磁场的大小转换为电压的大小,并以正负来表示磁场的方向。下面是显示霍尔效应的示意图。

  霍尔元件利用了“当电流IH流过半导体并且磁通B与电流成直角穿过时,会在垂直于电流和磁场的方向上产生电压VH”的这种现象,美国物理学家Edwin Herbert Hall(埃德温·赫伯特·霍尔)发现了这种现象并将其称为“霍尔效应”。产生的电压VH由下列公式表示。

  如公式所示,电流越大,电压越高。常利用这个特性来检测转子(磁体)的位置。

  下面将按照步骤①~⑥来说明无刷电机的旋转原理。为了易于理解,这里将永磁体从圆形简化成了矩形。

  ①在三相线点钟方向上,线点钟方向上,线极永磁体的N极在左侧,S极在右侧,并能旋转。

  使电流Io流入线,以在线圈外侧产生S极磁场。使Io/2电流从线流出,以在线圈外侧产生N极磁场。

  在对线的磁场进行矢量合成时,向下产生N极磁场,该磁场是电流Io通过一个线倍大小,与线倍。这会产生一个相对于永磁体成90°角的合成磁场,因此能产生最大扭矩,永磁体顺时针旋转。

  ②在旋转了30°的状态下,电流Io流入线,使线中的电流为零,使电流Io从线流出。

  线的外侧变为S极,线的外侧变为N极。当矢量合成时,产生的磁场是电流Io通过一个线)倍。这也会产生相对于永磁体的磁场成90°角的合成磁场,并顺时针旋转。

  当根据旋转位置减小线的流入电流Io、使线的流入电流从零开始增加、并使线的流出电流增加到Io时,合成磁场也顺时针旋转,永磁体也继续旋转。

  ※假设各相电流均为正弦波形,则此处的电流值为Io × sin(π⁄3)=Io × √3⁄2 通过磁场的矢量合成,得到总磁场大小为一个线 倍。当各相电流均为正弦波时,无论永磁体的位置在哪,矢量合成磁场的大小均为一个线倍,并且磁场相对于永磁体的磁场成90°角。

  ③在继续旋转了30°的状态下,电流Io/2流入线流入线,电流Io从线流出。

  线的外侧变为S极,线的外侧也变为S极,线的外侧变为N极。当矢量合成时,产生的磁场是电流Io流过一个线倍(与①相同)。这里也会产生相对于永磁体的磁场成90°角的合成磁场,并顺时针旋转。

  这样,如果不断根据永磁体的位置依次切换流入线圈的电流,则永磁体将沿固定方向旋转。同样,如果使电流反向流动并使合成磁场方向相反,则会逆时针旋转。

  下图连续显示了上述①~⑥每个步骤的每个线圈的电流。通过以上介绍,应该能理解电流变化与旋转之间的关系了。

  步进电机是一种可以与脉冲信号同步准确地控制旋转角度和转速的电机,步进电机的也称为“脉冲电机”。由于步进电机无需使用位置传感器仅通过开环控制就可以实现准确的定位而被大范围的使用在需要定位的设备中。

  在外观示例中,给出的是HB(混合)型和PM(永磁)型步进电机的外观。在中间的结构图给出的也是HB型和PM型的结构。

  步进电机是线圈固定、永磁体旋转的结构。右侧的步进电机内部结构概念图是使用两相(两组)线圈的PM电机示例。在步进电机基本结构示例中,线圈配置在外侧,永磁体配置在内侧。线圈除了两相外,还有三相和五相等相数较多的类型。

  有些步进电机具有其他不同的结构,但是为便于介绍其工作原理而在本文中给出了基本结构的步进电机。通过本文希望了解步进电机基本上采用线圈固定、永磁体旋转的结构。

  下面使用下图来介绍步进电机的基本工作原理。这是上面两相双极型线圈每一相(一组线圈)的励磁示例。该图的前提是状态从①到④变化。线圈分别由线和线组成。另外,电流箭头表示电流流动方向。

  通过电子电路按照上述①至④的顺序切换流过线圈的电流,即可使步进电机旋转。在该示例中,每一次开关动作会使步进电机旋转90°。另外,当使电流不断流过某一线圈时,能保持停止状态并使步进电机具有保持转矩。顺便提一下,如果将流过线圈的电流顺序反过来,则可以使步进电机反向旋转。

  近年来,随着花了钱的人日用电器“智能化”的呼声慢慢的升高,利用小型电机实现基本自动机械功能需求也逐步激增。这些电机驱动器按照制动类别划分,被大范围的使用在家用电器、家居及工业自动化和汽车电子设备等应用中。 从开窗到智能锁操作,亦或是大灯调节,电机驱动器正无处不在,而且,随技术的发展,三相无刷电机在不断代替老式的有刷电机,可靠性和效率得到大幅度提通常,简单的有刷电机由MOSFET组成的半桥或全桥来驱动,具体取决于要不要单向或双向旋转(见图1),利用PWM输入控制电流来控制速度。有刷电机技术成熟,因成本低廉且相对易于控制而被普遍的使用,但也由于有刷的换向器触点和碳刷很容易磨损,导致其常规使用的寿命大打折扣。 相比而言,三相无刷电机在

  设计更紧凑更灵活 /

  在现代机器人设计中,头部、颈部、四肢的任何活动都需要各种各样电机的支持,如传统的旋转电机、步进电机、直线电机和其它特殊电机,但这些电机的驱动和控制要求各有不同,怎么来实现各种电机的精确控制解决方案?如何以最低的功耗实现对它们的控制?常常对设计师来说是一大挑战。本文将详细地讨论高压电机控制管理系统的各核心子系统在具体实现时应注意些什么问题。 高压交流(HVAC)电机、工业逆变器或高压永磁无刷电机是高电压系统的几个例子,它们典型地按他们的马力进行分类。虽然仍是最常见的,但别的类型电机也已然浮现,如直线电机和内嵌各种激励器实现的齿轮头电机。数字电机控制解决方案允许精确地控制这些机械驱动机构的位置、速度和转矩。在这类大型机械驱动机构中的MOS

  本文给出了一种使用PSoC3 CY8C3866AXI-040芯片和L298双全桥功率芯片对两轴步进电机控制的方法,该方案电路简单,控制方便,实验根据结果得出,控制管理系统运行正常,可靠性较高。 1,概述步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机。它的位移速度与脉冲频率成正比,位移量与脉冲数成正比。每来一个脉冲电压, 转子就旋转一个步距角。根据电压脉冲的分配的方法,步进电机各相绕组的电流轮流切换,从而使电机旋转。步进电机具有步进数可控、运行平稳、价格实惠公道的优点,在加速器控制管理系统中的应用很广。本文介绍了一种两轴步进电机细分控制管理系统,使用Cypress的PSoC3芯片CY8C3866AXI-040和步进电机功率芯片L298来实现

  细分控制管理系统 /

  电机控制系统是指通过对电机的电流、电压、转速、位置等参数来控制,调节电机运作时的状态的系统。它通常由硬件和软件两部分所组成,包括电机驱动器、传感器、控制器、编码器等组件及相应的控制算法。其基本功能是控制电机的运行、保护电机、实现各种运动模式和控制模式等。 电机控制管理系统的工作原理 电机控制管理系统的工作原理是将输入信号转换为合适的控制信号,通过驱动器将控制信号转换为电机所需的电流或电压,以此来实现对电机的控制。常见的操控方法有PWM控制、调速控制、定位控制、阶跃控制等。同时,系统能通过传感器等检测器件获取电机的运作时的状态反馈信号,以此来实现闭环控制和自适应控制等高级控制模式。 通过电机控制管理系统,能轻松实现电机高效、精确、可靠地运行,广泛

  前几天帮别做一个51的小东西需要编码器,结果发现网上编码器的程序比较不好找,自己根据别人一个巧妙的思路写了一个读编码器读数的程序,用LCD1602显示出来。里边还有使用L298N驱动42步进电机部分,可以借鉴一下。 单片机源程序如下: #include reg52.h typedef unsigned char uchar; typedef unsigned int uint; //LCD1602定义 #define LCD1602_DB P0 //LCD1602数据总线; //RS端 sbit LCD1602_RW = P2^6; //RW端 sb

  旋转编码器是一种基于电磁感应原理的精密测量角位移的传感器,转子和定子中均有绕组。若在转子绕组中通上正弦激磁电流,则转子在定子绕组中感应出同频率的电压,但相位或幅值随转子和定子的相对位移而变化。感应电压经鉴相或鉴幅并经A/D转换等电子线路的处理,输出若干位的数字信号(绝对值型),或输出具有一定相位差及频率差的多相脉冲或正弦信号。 旋转编码器 一般说来有增量式旋转编码器,绝对式旋转编码器,正弦输出旋转编码器,马达旋转编码器这几种!一般很多高级的煤矿在井下电动机的控制的时候采用PLC系统的时候有应用 旋转编码器应用需要注意的几点: 应注意三方面的参数: 1). 械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装

  #include #define uint unsigned int sbit A=P1^0; //控制A的电流方向,0为反,1为正 sbit di=P1^1; sbit A1=P1^2; sbit A2=P1^3; //控制A的速度 sbit B1=P1^4; sbit B2=P1^5; //控制B的速度 void delayms(uint z) { uint x,y; for(x=z;x 0;x--) for(y=110;y 0;y--); } void run() { A=0; A1=0; A2=0; delayms(5); di=1; B1=0; B2=0; delayms(5); A=1;

  有奖直播 瑞萨新一代视觉 AI MPU 处理器 RZ/V2H:高算力、低功耗、实时控制

  晶心科技于4/9、4/11于上海、深圳举办ANDES RISC-V CON研讨会

  看好RISC-V于AI、车用电子、应用处理器及安全技术的市场动向2024年4月8日 — 近年来,RISC-V 在车用电子、资安技术和人工智能等先进领域 ...

  编译自意法半导体博客继2023年宣布推出STM32MP2系列后,ST目前推出了包括STM32MP25,STM32MP23和STM32MP21三款产品。 STM32MP25将于今年上 ...

  芯原携最新的高效能IP应用亮相2024年国际嵌入式展面向大范围的应用场景,赋能下一代创新2024年4月9日至11日,芯原展位号:德国纽伦堡会展中心, ...

  面向消费电子、小家电、工业系统控制和楼宇自动化的低成本产品2024 年 4 月 9 日,中国北京讯 - 全球半导体解决方案供应商瑞萨电子 ...

  超级高铁技术是一种十分新潮的交通概念,它有望以其高速、低压系统重新定义移动出行的未来。超级高铁的核心是在密封管网络中,乘客舱在磁悬 ...

  站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科


上一篇:单相异步电动机和三相异步电动机的区别

下一篇:无刷直流电机动机定子与绕组结构


Copyright © 乐鱼体育官方首页下载-乐鱼全站最新安装 All rights reserved 备案号:沪ICP备17010193号-3 网站地图